721954S: Financial Econometrics

Hannu Kahra

April 20, 2016

Exam April 21, 2016

Instructions
e Open notes and books.

e You may use a calculator or a PC. However, turn off Internet connection and cell
phones. Internet access and phone communication are strictly prohibited
during the exam.

e The exam paper has 4 pages and the R output in the appendix has 9 pages.

Manage your time carefully and answer as many questions as you can.
e For simplicity, if not specically given, use 5% Type-I error in hypothesis testings.
e Round your answers to 3 significant digits.

o No team work.

Problems

Problem A: (30 pts) Answer briefly the following questions. Each question has two points.

1. Give two situations under which serial correlations exist in observed asset returns
even though the true underlying returns are serially uncorrelated.

2. (Questions 2 to 8): Consider the daily S&P 500 index. Some analysis is attached.
Let 7+ be the daily log return of the index. Is the expected mean return E(r;) zero?
Why?

3. Does the daily log return of the S&P index follow a skew distribution? Why?
4, Does the daily log return of the S&P index have heavy tails? Why?

5. The sample ACF of r;, namely pg, p1,..-,09 are given. Test the null hypothesis Hp :
p1 = 0 versus the alternative hypothesis Hy : p1 # 0, where p; is lag-1 ACF of .
Compute the test statistic and draw the conclusion.
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10.

11.

12.

13.

14.

15.

. Turn to the daily log index p;. A model, called m2, is fitted in the R output. Write

down the fitted model, including residual variance.

Use the fitted model m2 to forecast the log index at the forecast origin 7' = 1336.
What is the 1-step ahead point forecast? Obtain a 95% interval forecast for po3ag.

What is the 2-step ahead point forecast of Pt at the forecast origin T' = 13367 Use
the model to derive the forecast,.

Let Ry and r; be the daily simple and log return, respectively, of an asset. What is

the relationship between R; and r,? Suppose further that r; follows a norma) distri-
bution with mean 0.05 and variance 0.04. What is the expected value of Ry for the

asset?

Consider the monthly log return, in percentages, of the Decile 8 portfolio of Center
for Research in Security Prices (CRSP) from January 1961 to December 2013 for
636 observations. A GARCH-M model is fitted to the series. Write down the fitted
model.

Consider again the monthly log returns, in percentages, of Decile 8 portfolio. Is the
risk premium statistically signicant at the 5% level? Why?

(For questions 12-15). Consider the growth rates of the real quarterly gross domestic
product (GDP) of Canada from the second quarter of 1980 to the second quarter of

2011 for 125 data points. Figure 1 shows the PACF of the GDP growth rates. Spec-
ify two possible AR models for the growth rate series and briefly justify your choices.

The order selection via AIC is also given. The criterion selects an AR(4) model. An
AR(4) model is estimated, Write down the fitted model, including the residual vari-
ance.

Consider the fitted AR(4) model. Does it imply the existence of business cycles in
the Canadian economy? Why?

If business cycles exist, compute the periods of all possible cycles.

Problem B. (27 pts) Consider the daily log returns of Apple stock starting from January

3, 2004 for 2517 observations. Let r; be the log return series. Based on the attached
R output, answer the following questions.

. (3 points) What is the mean equation for 73?7 Why?

(2 points) Is there any ARCH effect in r,? Why?

. (2 points) A simple volatility model, called m1 in R, is entertained for ;. Is Model

ml adequate for the log return series? Why?

- (3 points) A refined model, called m2 in R, is fitted. Write down the model, including

the distribution of the innovations.




5. (3 points) Let £ be the skew parameter in Model m3. Based on the model, is the dis-
tribution of r; skew? Perform a statistical test to support your answer.

6. (2 points) Compare the three models m1, m2, m3. Which model is preferred? Why?

7. (3 points) To estimate the potential leverage effect in 7y, we consider an APARCH(1,1)
model with § =2. Write down the fitted model, including the innovation distribution.

8. (4 points) The average volatility of r; via the APARCH model is 0.02248 and the
approximate 99¢h quantile of ry is 0.061758 resulting in a; = 0.06. To see the impact
of leverage effect, (a) compute the volatility o; if a;—1 = 0.06 and oy—1 = 0.02248, (b)
compute the volatility oy if a;—1 = —0.06 and 031 = 0.02248, and finally, (c) compute
volatility ratio [(b)/(a)].

9. (2 points) An IGARCH model with normal innovations is also fitted for the Apple
log return r;. Write down the fitted model.

10. (3 points) Using the fitted IGARCH(1,1) model and the information provided, com-
pute the volatility o518 for the Apple log return.

Problem C. (17 points) Consider the monthly log return of Decile 1 portfolio of CRSP
from January 1961 to December 2013 for 636 observations. Let d1; denote the monthly
log return. Several volatility models were fitted. Use the attached R output to an-
swer the following questions.

1. (4 points) Both the GARCH(1,1) model with Gaussian innovations, g1, and the
GARCH(1,1) model with Student-¢ innovations, g2, were rejected based on model
checking. A refined model, called g3, is entertained. Write down the fitted model,
including the mean equation and the innovation distribution.

2. (2 points) Based on the fitted model g3, is the distribution of the log returns skew?
Why?

3. (3 points) Based on the model g3, compute a 95% 4-step ahead interval forecast for
the log return of Decile 1 portfolio at the forecast origin December 2013.

4. (3 points) To study the leverage effect, a TGARCH or GJR-type of model is enter-
tained. Denote the model by g4. Based on the model, is the leverage effect signi-
cant? State the null and alternative hypotheses, obtain the test statistic, and draw
the conclusion.

5. (3 points) Based on the model g4, compute a 95% 4-step ahead interval forecast for
the log return of Decile 1 portfolio at the forecast origin December 2013.

6. (2 points) Compare the two 95% interval forecasts. Briefly state the impact of lever-
age effect?

Problem D. (14 points) Consider the monthly U.S. heating oil price and the natural gas
price from November 1993 to August 2012. Use the attached R output to answer the
following questions:




—

. (2 points) Focus on the logarithm of the heating oil price. Preliminary analysis shows
that the log price has a unit root so that the growth rate is used in model specica-
tion. The AIC selects an AR(1) for the growth rate. Therefore, an ARIMA(1,1,0)
model is entertained for the log heating price. Write down the fitted model, includ-
ing residual variance.

2. (2 points) Since the fitted AR(1) coefficient is not large, we also entertained an expo-
nential smoothing model. Write down the fitted model, including the residual vari-
ance,

3. (2 points) Model checking shows that the prior two models fit the data reasonably
well. Based on in-sample fit, which model is preferred? Why?

4. (2 points) The two models were used in out-of-sample forecasting. Based on the out-
of-sample performance, which model is preferred? Why?

5. (3 points) Next, to make use of the information in the natural gas price, we consider
a simple linear regression between the log heating oil price and log natural gas price.
The residuals of the regression model shows strong serial correlations. To avoid spu-
rious regression, let g and z; be the growth rate of heating oil price and natural gas
price, respectively. White down the simple linear regression for the two growth rate
series. What is the R? of the model?

6. (3 points) The residuals of the prior simple linear regression contains significant lag-1
serial correlation so that a regression model with time series errors is fitted. Write
down the fitted model.

Problem E. (12 points) Consider the quarterly earnings per share of Procter & Gamble
from 1983.11 to 2012.I1I. Figure 2 shows the time plot of the earnings. From the plot,
there was a negative earnings in the 80s and two large jumps occurred around 2010.
For simplicity, we analyze the earnings z; directly. Sample autocorrelations of differ-
enced data suggest the Airline model.

1. (2 points) Write down the fitted time series model m1 for the x; series, including the
residual variance.

2. (2 points) The fitted model show a large outlier at t = 104. Define an indicator vari-
able for this particular data point.

3. (2 points) As a matter of fact, there are several outliers. The model m4 contains
three large outliers. Model checking shows that the ACF of the residuals has a, signi-
cant correlation at lag 3 so that a refined model is entertained. The resulting model
is denoted by m5. Is the lag-3 MA coefficient 65 of Model m5 signicantly different
from zero? Why?

4. (6 points) Finally, an additional outlier is found and an insignificant parameter is
also detected. The final model for z; is Model m7. Write down the fitted model, in-
cluding residual variance.
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Figure 1: The sample partial autocorrelation function of the quarterly growth
rates of Canadian gross domestic product from 1980.1I to 2011.1I.
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Figure 2: Quarterly earnings per share of Procter & Gamble stock from
1983.11 to 2012.ITT




R output: edited

### Problem A ####g

> getSymbols("“GSPC",from="XXXX",to="XXXX")
> sp=log(as.numeric(GSPC[,8]))

> rtn=diff (sp)

> require(fBasics)

> basicStats(rtn)

rtn

nobs 1335.000000
~ Minimum -0.068958
Maximum 0.068366
Mean 0.000523
SE Mean 0.000329
LCL Mean -0.000123
UCL Mean 0.001169
Variance 0.000145
Stdev 0.012032
Skewness -0.281485
Kurtosis 4,239532

> ml=acf (rtn)

> mi$acf[1:10]
[1] 1.000000000 -0.085543007 0.036031058 -0.0652680091 0.053562869
(6] -0.062333101 -0.002364827 -0.001059370 ~-0.001589788 ~0.033927102

> m2=arima(sp,order=c(0,1,1))
> m2
Call: arima(x = sp, order = ¢(0, 1, 1))
Coefficients:
mal
-0.0788
5.6, 0.0265

sigma2 estimated as 0.000144: log likelihood = 4010.25, aic = -8016.49
> spl1336]

[1] 7.530158

> m2$residuals[1336]

(1] -0.008005722
HEHEHEREAREEHEERE Decile 8 #ii#
> idx=c(1:6360) [da[,2]==8]

> d8=log(da[idx,3]+1)

> plot(d8,type="1’)

> source("garchM.R")

> d8=d8+*100

> gh=garchM(d8)

Maximized log-likehood: -2064.533

Coefficient(s):
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Estimate Std. Error t value Pr(>|t|)
mu -1.2634761 1,1378947 -1.11036 0.266843
gamma 0,0625708 0.0289221 2.16342 0.030509 *
omega 4.0752975 1.6008262 2.,54575 0.010904 =*
alpha 0.0700690 0.0263922 2,65491 0.007933 *x
beta 0.8288135 0.0534552 15.50483 < 2e-16 **x*
i Canadian GDP #i#
> dim(qgdp)

[1] 126 &
> y=log(qgdpl[,3:5])
> head(y)
uk ca us

1 12,05778 13.34518 15.59190

12.02211 13.38773 16.60021

6

> ca=diff (y$ca)

> pacf(ca)  ### See Figure 1 of the exam.
> mO=ar (ca,method="mle")

> mO$order

(1] 4

> ml=arima(ca,order=c(4,0,0))

> ml

Call: arima(x = ca, order = c(4, 0, 0))
Coefficients:

arl ar2 ar3 ar4 intercept
0.6485 -0.1757 0.2334 -0.2068 0.0060
s.e. 0.0880 0.1037 0.1032 0.0899 0.0011

sigma”2 estimated as 3.898e-06: log likelihood = 456.85, aic = -901.

###### Problem B ##it#
> aapl=log(da$rtn+1)
> t.test (aapl)
One Sample t-test
data: aapl
t = 3.4145, df = 2616, p-value = 0.0006491
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.0006756272 0.0024984813

> Box.test(aapl,lag=15,type=’Ljung’)
Box-Ljung test
data: aapl
X-squared = 22.8613, df = 15, p-value = 0.08735

> at=aapl-mean(aapl)
> Box.test(at"2,lag=10,type=’Ljung’)
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Box-Ljung test
data: at”2
X-squared = 432.3742, df = 10, p-value < 2,2e-186

> mi=garchFit(“garch(1,1),data=aapl,trace=F)

> summary(m1)

Title: GARCH Modelling

Call: garchFit(formula = “garch(1, 1), data = aapl, trace = F)

Mean and Variance Equation: data ~ garch(i, 1) [data = aapl]
Conditional Distribution: norm

Error Analysis:
Estimate Std. Error +t value Pr(>|t])

mu 2.297e-03 4.025e-04 5.708 1.16e-08 s***
omega 6.85b6e-06 2.291e-06 2.992 0.00277 *x
alphal 5.635e-02 9,243e-03 6.097 1.08e-09 **¥x*
betal 9.320e-01 1.153e-02 80.859 < 2e-16 %k
Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi~2 880.0706 O
Shapiro-Wilk Test - R W 0.9743081 0
Ljung-Box Test R Q(10) 14.85476 0.1374473
Ljung-Box Test R Q(20) 19.38376 0.4970216

Ljung-Box Test R"2 Q(10) 5.644311 0.8442093
Ljung-Box Test R"2 Q(20) 12.05117 0.9143034
Information Criterion Statistics:

AIC BIC SIC HQIC
-4.826153 -4.816887 -4.826158 -4,822790

> m2=garchFit("garch(1,1),,data=aapl,trace=F,cond.dist="std")
> sumnary(m2)
Call: garchFit(formula = “garch(i, 1), data=aapl, cond.dist="std", trace = F)

Mean and Variance Equation: data ~ garch(1l, 1) [data = aapl]
Conditional Distribution: std

Error Analysis:

Estimate Std, Error t value Pr(>|t|)
mu 1.879e-03 3.676e-04 5.111 3.21e~07 s*%*
omega 5.970e~06 2.443¢-06 2.444 0.0145 =*
alphal 5.221e-02 1.131e-02 4.616 3.90e-06 *¥x
betal 9.378e~01 1.339e-02 70.008 < 2e-16 **%
shape 5.319e+00 5.494e-01 9.682 < 2e-16 ***

Standardised Residuals Tests:
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Statistic p-Value

Ljung-Box Test R Q(10) 14.73618 0.1419803
Ljung~Box Test R Q(20) 19.45028 0.492754
Ljung-Box Test R~2 Q(10) 6.34873 0.7851631
Ljung-Box Test R~2 Q(20) 12.69443 0.8901063
Information Criterion Statistics:

AIC BIC SIC HQIC

-4.901877 -4.890294 -4.901885 -4,897673

> m3=garchFit(~garch(l,1),data=aapl,trace=F,cond.dist="sstd")
> summary(m3)
Call: garchFit(formula="garch(l, 1), data=aapl, cond.dist="sstd", trace=F)

Mean and Variance Equation: data ~ garch(1l, 1) [data = aapl]
Conditional Distribution: sstd

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu 2.065e-03  3.997e-04 5.168 2.37e-07 ***
omega 6.160e-06 2.497e-06 2.467 0.0136 *
alphal 5.345e-02 1,152e-02 4.639 3.51e-06 %%
betal 9.364e-01 1.359e-02 68.903 < 2e-16 *¥x
skew 1.033e+00 2.846e-02 36.307 < 2e-16 #*x*
shape 5.312e+00 5.506e-01 9.648 < 2e-16 ***
Standardised Residuals Tests:

Statistic p-Value

Ljung-Box Test R Q(10) 14.7672 0.1407828
Ljung-Box Test R Q(20) 19.40163 0.49568739
Ljung-Box Test R-2 Q(10) 6.163352 0.8013575

Ljung-Box Test R*2 G((20) 12.556339 0.8957141
Information Criterion Statistics:

AIC ~ BIC SIC HQIC
-4.901640 —-4.887741 -4.901651 -4,896596

> md=garchFit(~aparch(1,1),data=aapl,trace=F,cond.dist="std",delta=2,include.delta=F)
> summary(m4)
Call:garchFit(formula="aparch(1,1),data=aapl,delta=2,cond.dist="std",

include.delta = F, trace = F)
Mean and Variance Equation: data
Conditional Distribution: std

~

aparch(1, 1)

Error Analysis:

Estimate Std. Error t value Pr(>|tl)
mu 1.758e-03  3.644e-04 4.824 1.41e-06 **x*
omega 1.087¢-06  3.770e-06 2.882 0.00396 *x*
alphal 6.487e-02 1.368e-02 4.742 2.12e-06 *¥%
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gammal 3.046e-01  7.254e-02 4,198 2.69e-05 ***
betal 9.11%e-01 1.806e-02 50.496 < 2e-16 **x*
shape b5.463e¢+00 5.788e-01 9.438 < 2e-16 ***
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 15.83973 0.1043131

Ljung-Box Test R 0(20) 20.34165 0.4367482
Ljung-Box Test R72 q(10) 3.01369 0.9811
Ljung-Box Test R"2 Q(20) 8.,262486 0.9900612

> mean(m4@sigma.t)
[1] 0.02247951

> mb=Igarch(aapl, include.mean=T)
Estimates: 0.002121092 0.9608989
Maximized log-likehood: -6063.435
Coefficient(s):
Estimate Std. Error t value Pr(>|t])
mu 0.002121092 0.000403833 5.25239 1.5014e-07 #**x*
beta 0.960698868 0.004745300 202.45272 < 2.22e—16 ###*
> names (m5)
(1] "par® "volatility™"
> length(aapl)
[1] 2617
> aapl(2517]
[1] 0.01165383
> mb$volatility[2517]
[1] 0.01324704
HHERHAHEEHER RS Problem C #4#i#
> di=log(dalidx,3]+1) ### Decile 1 log returns
> gl=garchFit(“garch(1,1),data=d1,trace=F)
> summary(gl)
Conditional Distribution: norm
> g2=garchFit("garch(1,1),data=di,trace=F,cond.dist="std")
> summary (g2)
Conditional Distribution: std

> g3=garchFit(”garch(1,1),data=d1,trace=F,cond.dist="sstd")
> summary(g3)

Call: garchFit(formula="garch(1,1),data=d1,cond.dist=“sstd”, trace=F)

Mean and Variance Equation: data ~ garch(l, 1) [data = di]
Conditional Distribution: sstd

Error Analysis:
Estimate Std. Error t value Pr(>|t])
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mu 7.968e-03  1.459¢-03 5.461 4.74e-08 #xx
omega 8.496e-06  3.871e-05 2.195 0.028177 =*
alphal 1.37%e-01  3,377e-02 4.083 4.45e~05 %
betal 8.243e-01 3.667e-02 22.478 < 2e-16 **x*
skew 7.837e~01 4.706e-02 16.665 < 2e-16 *x¥x%
shape 7.069e+00 1,852e+00 3.816 0.000135 **x*
Statistic p-Value
Ljung-Box Test R Q(10) 10.01715 0.4389901
Ljung-Box Test R Q(20) 15.1446 0.7680746
Ljung-Box Test R~2 Q(10) 5.619747 0.8461352
Ljung-Box Test R"2 Q(20) 9.377167 0.9781127

> predict(g3,4)
meanForecast meanError standardDeviation

1 0.007967509 0.03286457 0.03286457
2 0.007967509 0.03352915 0.03352915
3 0.007967509 0.03415640 0.03415640
4 0.007967509 0.03474924 0.03474924

>

> g4=garchFit("garch(1,1),data=d1,trace=F,cond.dist="sstd",leverage=T)

> summary(g4)

Call: garchFit(formula ="garch(l,1),data=d1,cond.dist="sstd", leverage=T,trace=F)

Mean and Variance Equation: data ~ garch(i, 1) [data=d1i]
Conditional Distribution: sstd

Error Analysis:
Estimate Std. Error t value Pr(>|tl)

mu 7.365e-03  1.483e-03 4.965 6.87e-07 ***
omega 1.144e-04  4.939e-05 2.317 0.020512 =*

alphal 1.200e-01i  3.491e-02 3.438 0.000585 ¥
gammal 3.016e-01  1.495e-01 2.018 0.043634 =*

betal 8.107e-01  3.842e-02 21.102 < 2e-16 *%%*
skew 7.850e-01 4,707e-02 16.677 < 2e-16 **x
shape 7.177e+00  1,898e+00 3.782 0.000156 Aok

> predict(g4,4)
meanForecast meanError standardDeviation

1 0.007365254 0.03140876 0.03140876
2 0.007365254 0.03213370 0.03213370
3 0.007365254 0.03279401 0.03279401
4 0.007365254 0.03339684 0.03339684

ARG Problem D ####HHE R
> da=read.table("m-gasoil.txt" ,header=T)
> hp=da$hoil; ng=da$gasp

> lhp=log(hp)

> ghp=diff(1hp)
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> mi=ar(ghp,method="mle")

> ml$order

(11 1

> m2=arima(lhp,order=c(1,1,0)) ### model for log(heating o0il price)
> m2

Call:arima(x = lhp, order = c(1, 1, 0))

Coefficients:
aril

0.2029

s.e. 0.0657

sigma”2 estimated as 0.007063: log likelihood = 237.92, aic = -471.83
> m3=arima(lhp,order=c(0,1,1))

> m3

Call:arima(x = lhp, order = c(0, 1, 1))

Coefficients:
mal

0.1833

s.e. 0.0608

sigma”2 estimated as 0.007091: 1log likelihood = 237.48, aic = -470.96
> backtest (m2,1hp,200,1)
(1] "RMSE of out-of-sample forecasts"
(1] 0.05218009
[1] "Mean absolute error of out—-of-sample forecasts"
[1] 0.04500329
> backtest(m3,lhp,200,1)
(1] "RMSE of out-of-sample forecasts"
[1] 0.05219218
[1] "Mean absolute error of out-of-sample forecasts"
(11 0.04506306
>
> lng=log(ng)
> m3=1m(1hp~lng)
> summary(m3)
Call: lm(formula = lhp ~ lng)
Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -1.09767 0.08862 -12.39 <2e-16 *%x%
1ng 0.85132 0.06194 13.74 <2e~16 *#¥x%
Residual standard error: 0.4997 on 224 degrees of freedom
Multiple R-squared: 0.4575, Adjusted R-squared: 0.4551
> acf (m3$residuals)
> gng=diff (lng)
> m3a=1m(ghp~-1+gng)
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> summary(m3a)
Call: Im(formula = ghp ~ -1 + gng)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
gng 0.21003 0.03726 5.637 5.18e-08 *¥*
Residual standard error: 0.08049 on 224 degrees of freedom
Multiple R-squared: 0.1242, Adjusted R-squared: 0.1203

> acf (m3a$residuals)
> m4=arima(ghp,order=c(1,0,0),xreg=gng, include.mean=F)
> m4
Call:arima(x =ghp, order=c(1,0,0), xreg=gng, include.mea =F)
Coefficients:
arl gng

0.1919 0.2018

s.e. 0.0660 0.0365

sigma®2 estimated as 0.006215: log likelihood = 252.31, aic = -498.63
#iEHEHS Poblem E bk
> da=read.table("q-pg-earnings.txt", header=T)
> pg=dal,2]
> acf(pg); acf(diff(pg)); acf(diff(diff(pg),4))
> ml=arima(pg,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4))
> ml
Call:arima(x=pg, order=c(0,1,1), seasonal=list(order=c(0,1,1),period=4))
Coefficients:
mal smal

-0.7098 -0.5198

s.e. 0.0736 0.2182

sigma”2 estimated as 0.006728: log likelihood = 121.12, aic = -236.24
> which.max(mi$residuals)
[1] 104
> length(pg)
[1] 118
> I104=rep(0,118); I104[104]=1
> m2=arima(pg,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4),xreg=I104)
> m2
Coefficients:
mal smal T104

-0.7136 -0.6427 0.44898
s.e. 0.0689 0.0900 0.0586
sigma”2 estimated as 0.004327: 1log likelihood = 141.58, aic = -275.16
> which.max(m2$residuals)
[1] 108
> I108=rep(0,118); I108([108]=1
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> X=cbind(I104,1108)

> m3=arima(pg,order=c(0,1,1),seasona1=list(order=c(0,1,1),period=4),xreg=X)

> m3
Coefficients:
mal smal 1104
-0.4855 -0.628 0.5356
s.e. 0.1029 0.077 0.0344

sigma”2 estimated as 0.001809:
> which.min(m3$residuals)

[1] 18

> I18=rep(0,118);
> X=cbind(X,I18)

I18[18]=1

1108
0.4466
0.0349
log likelihood = 189.08,

aic

-368.16

> m4=arima(pg,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4),xreg=x)

> md
Coefficients:
mal smal I104
-0.3301 -0.5322 0.5303
s.e. 0.1220 0.0858 0.0273

sigma”2 estimated as 0.001341:

I108 I18
0.4421 -0.1711
0.0277 0.0261

log likelihood = 205.69,

aic

-399.39

> m5=arima(pg,order=c(0,1,3),seasonal=list(order=c(0,1,1),period=4),xreg=x)

> mb
Coefficients:
mal ma2 ma3
-0.4113 0.3465 -0.7428
s.e. 0.0901 0.0889 0.1009

sigma”2 estimated as 0.001148:
> which.max(m5%residuals)

(1] to2

> I102=rep(0,118); I1102[102]=1
> X=cbind(X,I1102)

smal 1104 I108
-0.2694 0.4790 0.4419
0.1443 0.0166 0.0176

log likelihood = 213.08,

I
-0.17
0.01

aic

18
54
62

-410.17

> m6=arima(pg,order=c(0,1,3),seasonal=list(order=c(0,1,1),period=4),xreg=X)

> mb
Coefficients:
mal ma2 ma3
-0.0741 -0.2762 -0.3083
s.e. 0.0981 0.1017 0.0941

sigma”2 estimated as 0.0006837:
> ¢1=c(0,NA,NA,NA,NA,NA,NA,NA)

smal I104 1108
-0.3167 0.5386 0.41986
0.1127 0.0170 0.0165
log likelihood = 242.17,

-0.1701
0.0145

aic

I1

8 I102
0.1511
0.0152

-466.34

> m7=arima(pg,order=c(0,1,3),seasona1=list(order=c(0,1,1),period=4),xreg=X,fixed=c1)

> m7
Coefficients:
mal ma2 ma3 smal 1104 I108
0 -0.2757 -0.3232 -0.3347 0.5389 0.4195 -0.
s.e. 0 0.1022 0.0916 0.1081 0.0163 0.0158 0.

sigma”2 estimated as 0.0006877:

log likelihood = 241.89,

18

I18
1701
0139

aic

(o]
0

1102
.1501
.0144

-467.77




