

YLIOPISTOTENTTI - UNIVERSITY EXAM

Opiskelijan nimi / Student name:			Opiskelijanumero / Student number:		
Opettaja täyttää / Lecturer f	fills in:				
Opintojakson koodi and nir	ni / The code and the nam	e of t	he course:		
721957S					
Fundamentals of fina	ance				
Oulu Business School					
16.1.2017		3 h			
Exam 3		6 cu			
Jukka Perttunen					
Sallitut apuvälineet / The d	evices allowed in the exar	n:			
☑ Nelilaskin /	⊠ Funktiolaskin /		☑ Ohjelmoitava laskin /		
Standard calculator	Scientific calculator		Programmable calculator		
☐ Muu materiaali, tarkenne	ettu alla / Other material, s	pecifi	ed below:		
Tenttiin vastaaminen / Plea	-	ماناماء			
⊠ Suomeksi / in Finnish		_			
	-	-	on oikeus käyttää arvioitavassa tuskieli olisi englanti. Tämä ei koske		
vieraan kielen opintoja. (Kts		•	_		
			innish language for their study		
			sh, (excluding language studies) even the Education Regulations 18 §)		
Kysymyspaperi on palautet	·	estio	ns must be returned:		
☐ Kyllä / Yes	⊠ Ei / No				

- 1. Solve the following interest rate transformations.
 - a) The current six-month simple interest rate is 2.587%.

 Determine the corresponding continuously compounded interest rate.
 - b) The current annually compounded four-year interest rate is 3.252%. Determine the corresponding continuously compounded interest rate.
 - c) The current semiannually compounded five-year interest rate is 3.643%. Determine the corresponding continuously compounded interest rate.
 - d) The current annually compounded six-year interest rate is 4.254%. Determine the corresponding semiannually compounded interest rate.
- 2. The six-month Euribor rate and the three-year Euribor swap rate (3y/6m) are quoted at 2.400% and 3.000%, respectively. The yield-to-maturity of the fixed leg of the swap is 2.956% in terms of continuous compounding. The swap is just launched, pays the fixed swap rate agains the receiving of the floating six-month Euribor rate, and trades currently at it's par value of €1000.
 - a) Determine the duration of the fixed leg of the swap.
 - b) Determine the duration of the floating leg of the swap.
 - c) On the basis of duration, how much the value of the swap changes, if interest rates rise by 0.25 percentage units in terms of continuous compounding?
- 3. Three stocks together form a tangent portfolio corresponding to the risk-free rate of 2.0%. The annual expected returns, the annual variances/covariances, the tangent-portfolio weights, and the current prices of the stocks are reported in Table 1.
 - a) Determine the expected return and the volatility of the tangent portfolio.
 - c) Determine the expected return and the volatility of a portfolio, where 25% of the total capital of €1 million is invested in the risk-free asset, and the remaining 75% in the tangent portfolio.
 - d) Determine the number of shares of each of the stocks in the portfolio in c).
- 4. Table 2 reports the daily returns of a portfolio, the daily returns of the market portfolio, and the corresponding preceding-period market model parameter estimates, over a five-day period.
 - a) Calculate the cumulative market-adjusted abnormal return over the five-day period.
 - b) Calculate the cumulative risk-adjusted abnormal return over the five-day period.
- 5. The unlevered free cash from the previous year is 200 thousand euros. The cash flow is expected to grow at a 10% annual rate over the next two years. From the beginning of the third year the growth rate is expected to stabilize at the level of 5%. The required rate of return on assets is 12% in terms of annual compounding, and the debt-to-equity ratio of the firm is 1.5.
 - a) Determine the market value of the firm.
 - b) Determine the market value of equity of the firm.

Table 1.

Stock	Price	\overline{w}	E(R)	Variances/covariances			
				1	2	3	
1	12.50	0.42	0.16	0.2200	0.0440	0.0260	
2	8.00	0.26	0.08	0.0440	0.1400	0.0320	
3	18.75	0.32	0.10	0.0260	0.0320	0.0800	

Table 2.

Day	1	2	3	4	5
Portfolio return Market return Alpha Beta	-0.03347 -0.00117 0.000 0.825	0.01561 -0.00848 0.000 0.825	-0.00455 0.01525 0.000 0.825	0.01212 -0.00458 0.000 0.825	0.02068 -0.00472 0.000 0.825

$$E(R_p) = \sum_{i=1}^{n} w_i E(R_i)$$

$$Var(R_p) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij}$$

$$\sum_{t=1}^{\infty} \frac{(1+g)^t D_0}{(1+k)^t} = \frac{(1+g)D_0}{k-g} = \frac{D_1}{k-g}$$

$$r_c = \frac{\ln(1 + r\Delta t)}{\Delta t}$$

$$r_{=}\frac{e^{r_{c}\Delta t}-1}{\Delta t}$$

$$AR_i = R_i - R_m$$

$$AR_i = R_i - (\hat{\alpha}_i + \hat{\beta}_i R_m)$$

$$B = Ce^{-yt_1} + Ce^{-yt_2} + Ce^{-yt_3} + \dots + (F+C)e^{-yT}$$

$$D = t_1 \frac{Ce^{-yt_1}}{B} + t_2 \frac{Ce^{-yt_2}}{B} + t_3 \frac{Ce^{-yt_3}}{B} + \dots + T \frac{(F+C)e^{-yT}}{B}$$

$$\Delta B = -D \times B \times \Delta y$$

