

YLIOPISTOTENTTILOMAKEPOHJA / UNIVERSITY EXAM TEMPLATE

Koskee tiedekuntia LuTK, OyKKK, KaTK, TTK, TST ja BMTK (Linnanmaan tentit) / Concerns Faculties SCI, OBS, OMS, TECH, ITEE and BMM (Linnanmaa campus)

Tentin päivämäärä / Date of exam: 20.01.2016	Tentin kesto	Tentin kesto tunteina / Exam in hours: 4h	
Tiedekunta / Faculty: Oulun yliopiston kauppakorkeakoulu / Oulu Business School			
Opintojakson koodi, nimi ja tentin numero / The code and the name of the course and number of the exam: 721345S, Intermediate Microeconomics, 2nd Retake Exam			
Tentaattori(t) / Examiner(s): Enni Ruokamo, Hannu Huuki		Sisäinen postios. / Internal address	
		60уККК	
Sallitut apuvälineet / The devices allowed in the exam:			
☑ Nelilaskin /	Funktiolaskin	/	☐ Ohjelmoitava laskin /
Standard calculator Sc	ientific calculat	tor	Programmable calculator
☐ Muu materiaali, tarkennettu alla / Other material, specified below:			
Tenttiin vastaaminen / Please answer the questions:			
Suomeksi / in Finnish	⊠ Englanniksi / in English		
Kysymyspaperi on palautettava / Paper with exam questions must be returned: ☐ Ei / No			

Answer to all 5 questions.

1.

Consider the following statements if they are true or false. <u>Verify</u> your answers briefly. In order to get the credit from the correct answer the explanation is needed.

- a) Indifference curves can never intersect with each other. 1p
- b) For goods x_1 and x_2 the marginal rate of substitution describes the market price ratio p_1/p_2 . 1p
- c) A Giffen good is a good that decreases in demand as income decreases. 1p
- d) A bond paying 1000€ each year forever with an annual discount rate of 6% has a present value of 6000€. 1p
- e) If firm has a production function of the form $y = f(x_1, x_2) = x_1^{0.3} x_2^{0.7}$, where x_i is the amount of input *i* and *y* is the amount of output, it exhibits constant returns to scale. 1p
- f) Adverse selection refers to situation where one side of the market can't observe the actions of the other side. 1p

2.

Intertemporal choice, two period model:

Consumer has preferences: $U(c_1, c_2) = c_1 c_2$, where c_1 is consumption in period 1 and c_2 is

where c_1 is consumption in period 1 and c_2 is consumption in period 2.

Let m_1 and m_2 be the incomes received in periods 1 and 2.

The interest rate is r.

Ignore the price effects by setting the prices in periods 1 and 2 to one: $p_1 = p_2 = 1$.

- a) Write down the intertemporal budget constraint? 2p
- b) Consumer maximizes intertemporal utility. Solve the optimized consumption levels $c_1^*(m_1, m_2, r)$ and $c_2^*(m_1, m_2, r)$. 3p
- c) Set $m_1 = 10$, $m_2 = 21$ and r = 5%. Is the consumer a saver or a borrower? 1p

3.

Danny has a utility function of the form $u(w) = \sqrt{w}$. He initially has wealth w of $4 \in$. He has a lottery ticket that will be worth $12 \in$ with probability 1/2 and will be worth $0 \in$ with probability 1/2.

- a) What are Danny's preferences towards risk. Is he risk loving, risk averse or risk neutral? Explain your answer by studying the shape of the utility function analytically and/or graphically. 3p
- b) What is Danny's expected utility of participating into this lottery? 2p
- c) What is the lowest price p at which he would sell his lottery ticket? 1p

4.

- a) Explain the concept of (own) <u>price elasticity of demand</u>. Calculate the elasticity of demand for a linear demand D(p) = a - bp, where a and b are parameters, p is price and D(p) is quantity demanded. 2p
- b) What marginal product measures? Calculate the marginal products of capital (K) and labor (L), when the production function is y = f(K, L) = √K + (1/3)L.
 Is the marginal product of capital MP_K diminishing, increasing or constant?
 Is the marginal product of labor MP_L diminishing, increasing or constant? 2p
- c) What is meant by <u>technical rate of substitution</u> (TRS)? Suppose the firm's production function is $y = f(K, L) = K^{1/3}L^{2/3}$. Calculate the TRS at a point, where the firm employs 4 units of capital (K) and 8 units of labor (L). 2p

5.

In a small town there are two bakers, A and B, baking identical breads b_A and b_B . The cost function for both bakers is c(b) = 4b. The inverse market demand curve for bread is p(b) = 100 - 2b.

First, study the market with <u>Cournot duopoly model</u>, where each firm chooses its output to maximize its profits given the output that it expects the other firm to produce.

a) Calculate the reaction functions R_A(b_B) and R_B(b_A). Draw a graph illustrating these functions, where output b_A is on the horizontal axis and output b_B is on the vertical axis.
Solve the Cournot-Nash equilibrium (b_A*, b_B*), and point it on your graph.
How much will baker A produce? How much will baker B produce?
What is baker A's profit? What is baker B's profit.
3p

Now, suppose the producers operate in a <u>Stackelberg-market model</u>. Baker A begins early, and acts as a Stackelber-leader. Baker B is a Stackelberg-follower.

b) Write down baker A's profit maximization problem. Solve leader's Stackelberg output b_A^S . Solve follower's Stackelberg output b_B^S . 2p

Finally, suppose the producers operate in a <u>Bertrand-market model</u>. Both bakers set their prices simultaneously.

c) What is the Nash equilibrium price p* in this framework?
 Explain the adjustment process of price setting.
 1p