
Question 1.  

 

Donald enjoys commodities x and y according to the utility function 
 

𝑈(𝑥, 𝑦) = 𝑥2 + 𝑦2. 
 
The prices of the commodities are 𝑝𝑥 = 3 € and  𝑝𝑦 = 4 €. Donald has m = 50 € to spend. 

 
a) Write down Donald’s budget constraint. What is the slope of the budget line? (1p) 

 
b) What does the marginal rate of substitution (MRS) measure? Calculate the marginal rate of 

substitution for Donald. (1p) 
 

c) Which affordable consumption bundle (x*, y*) maximizes Donald’s utility? (2p) 
 

d) Draw some of Donald’s indifference curves and his budget constraint. Mark also the 
optimal consumption bundle. Did you find the true maximum? (1p) 
 

e) How would you describe Donald’s preferences? (1p) 
 

 

Question 2. 

 

Ms. Fogg is planning an around-the-world trip on which she plans to spend 10000 €. The utility from 
the trip is a function of how much she actually spends on it (Y), given by 

 U(Y) = ln Y. 

 

a) If there is a 25 percent probability that Ms. Fogg will lose 1000 € of her cash on the trip, what is 
the trip's expected utility? (1p) 

 

b) Suppose that Ms. Fogg can buy full insurance against losing the 1000 € (say, by purchasing 
traveler's checks) at an actuarially fair premium of 250 €. What is her expected utility if she 
purchases this insurance? (2p) 

 

c) Does Ms. Fogg buy the insurance or face the chance of losing the 1000 € without insurance? Is 
she risk loving, risk averse, or risk neutral? Why? (2p) 

 

d) What is the maximum amount that Ms. Fogg would be willing to pay to insure her 1000 €? (1p) 

 

 



Question 3. 

 

a) What does it mean if two goods are perfect complements? What if they are perfect 
substitutes? Give examples for both. (2p) 
 

b) Explain what does consumer surplus mean? How is it used and why? Illustrate your answer 
with a graph. (2p) 

 
c) What is meant by returns-to-scale in production? Give an example using an arbitrary 

production function of your choice. (2p) 
 

Question 4. 

 

Suppose the demand curve D(p) and the supply curve S(p) for the market are given by the 
following equations:  
 
 D(p) = 300 - p  
 S(p) = 1/2p - 30  
 
a) What is the equilibrium price and quantity in this market? Calculate consumer and producer 
surplus. (2p) 
 
b) Suppose that government imposes a quantity tax t = 15 on firms. Solve the new market 
equilibrium. (2p) 
 
c) Calculate the effect of the tax on the consumer and producer surplus. (1p) 
 
d) Calculate the social welfare deadweight loss due to the tax policy. (1p) 
 

Question 5. 

 
In a small town there are two bakeries, A and B, baking identical breads. Denoting the amount of 
bread with b the cost function for both bakeries is c(b) = 4b. The inverse market demand curve for 
bread is p(b) = 100 − 2b. The output of bakery A is denoted with bA and the output of bakery B 
with bB.  
 
First, assume that the two bakeries play a Cournot game (quantity competition).  
 

a) Calculate the reaction functions for both firms: RA(bB) and RB(bA). Draw a graph illustrating 
these functions, where output bA is on the horizontal axis and output  bB is on the vertical 
axis. Solve the Cournot-Nash equilibrium (bA

∗ , bB
∗ ), and plot it on your graph. How much will 

bakery A produce? How much will bakery B produce? (3p) 
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Now, suppose the producers follow a Stackelberg market model. Bakery A begins early, and acts as 
a Stackelberg leader. Bakery B is a Stackelberg follower.  
 

b) Write down bakery A’s profit maximization problem.  (2p) 

Solve the leader's Stackelberg output bA
S . 

Solve the follower's Stackelberg output bB
S .  

 
Finally, suppose the producers operate as in a Bertrand game (price competition).  
 

c) What is the Nash equilibrium price p∗ in this framework? (1p) 
Explain the adjustment process of price setting.  
 

 


