MATHEMATICAL ECONOMICS

Exam 2, 16.11.2014
Matti Koivuranta
Only calculators provided by the university are allowed!

1. Assume following matrices:

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
3 & 1 \\
4 & -1
\end{array}\right]
$$

Calculate the following:
a) $\operatorname{sum} A+B$
b) transpose B^{T}
c) product $A B$
d) determinant $|A|$
e) inverse A^{-1}
f) rank of matrix B
2. a) Solve equation $2 x^{-\frac{1}{2}}=1$.
b) Differentiate function $f(x)=\left(x^{2}-x+2\right) e^{2 x}$.
c) Compute definite integral $\int_{0}^{1}\left(x^{2}+1\right) d x$.
3. Equation $x^{2}+z^{2}+3 z y+2 y x+y^{2}=11$ holds when $x=0, y=2$ and $z=1$. Does the equation determine x as a function of y and z around point $(y, z)=(2,1)$? If yes, calculate the partial derivatives $\frac{\partial x}{\partial y}$ and $\frac{\partial x}{\partial z}$ at point $(y, z)=(2,1)$.
4. Solve the utility maximization problem

$$
\max _{\left\{c_{1}, c_{2}\right\}}\left\{\alpha \ln c_{1}+\beta \ln c_{2}\right\} \quad \text { s.t. } \quad p_{1} c_{1}+p_{2} c_{2} \leq w
$$

for the optimal consumption bundle $\left(c_{1}^{*}, c_{2}^{*}\right) \in \mathbb{R}_{++}^{2}$. Parameters $\alpha, \beta, p_{1}, p_{2}$ and w are all strictly positive.
5. a) Find an explicit solution for difference equation $y_{t+1}=\frac{1}{2} y_{t}+5$ with initial condition $y_{0}=10$.
b) Find stationary points of differential equation $y^{\prime}(t)=y(t)^{3}-y(t)$ and use graphical analysis to determine whether the stationary points are locally stable or not. Sketch the solution function $y(t)$ assuming initial condition $y(0)=\frac{1}{2}$.

Following lemmas, which consider testing for local quality of critical points, may or may not be useful:

Lemma 1 (definiteness of Hessian) Matrix A is

1. positive definite, if $\left|A_{i}\right|>0 \quad \forall i=1, \ldots, n$.
2. negative definite, if $\left|A_{1}\right|<0,\left|A_{2}\right|>0,\left|A_{3}\right|<0$, etc. (sign alternates with first sign negative).
3. positive semi-definite, if $\left|A_{i}\right| \geq 0 \quad \forall i=1, \ldots, n$.
4. negative semi-definite, if $\left|A_{1}\right| \leq 0,\left|A_{2}\right| \geq 0,\left|A_{3}\right| \leq 0$, etc.
5. indefinite, if none of the above holds.

Lemma 2 (using bordered Hessian) Assume an equality-constrained optimization problem with n choice variables and m constraints. Critical points of the Lagrangian can be classified by examining subdeterminants of the bordered Hessian.

A critical point is a strict local minimum if the signs of the $n-m$ largest subdeterminants are all equal to the sign of $(-1)^{m}$. A critical point is a strict local maximum if the signs of $n-m$ largest subdeterminants alternate and the sign of the largest subdeterminant is equal to the sign of $(-1)^{n}$.

