MATHEMATICAL ECONOMICS Exam 2, 16.11.2014 Matti Koivuranta

Only calculators provided by the university are allowed!

1. Assume following matrices:

$$A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix}.$$

Calculate the following:

- a) sum A + B
- b) transpose B^T
- c) product AB
- d) determinant |A|
- e) inverse A^{-1}
- f) rank of matrix B
- 2. a) Solve equation $2x^{-\frac{1}{2}} = 1$.
 - b) Differentiate function $f(x) = (x^2 x + 2)e^{2x}$.
 - c) Compute definite integral $\int_0^1 (x^2 + 1) dx$.
- 3. Equation $x^2 + z^2 + 3zy + 2yx + y^2 = 11$ holds when x = 0, y = 2 and z = 1. Does the equation determine x as a function of y and z around point (y, z) = (2, 1)? If yes, calculate the partial derivatives $\frac{\partial x}{\partial y}$ and $\frac{\partial x}{\partial z}$ at point (y, z) = (2, 1).
- 4. Solve the utility maximization problem

$$\max_{\{c_1, c_2\}} \{ \alpha \ln c_1 + \beta \ln c_2 \} \quad \text{s.t.} \quad p_1 c_1 + p_2 c_2 \le w$$

for the optimal consumption bundle $(c_1^*, c_2^*) \in \mathbb{R}^2_{++}$. Parameters α, β, p_1, p_2 and w are all strictly positive.

- 5. a) Find an explicit solution for difference equation $y_{t+1} = \frac{1}{2}y_t + 5$ with initial condition $y_0 = 10$.
 - b) Find stationary points of differential equation $y'(t) = y(t)^3 y(t)$ and use graphical analysis to determine whether the stationary points are locally stable or not. Sketch the solution function y(t) assuming initial condition $y(0) = \frac{1}{2}$.

Following lemmas, which consider testing for local quality of critical points, may or may not be useful:

Lemma 1 (definiteness of Hessian) Matrix A is

- 1. positive definite, if $|A_i| > 0$ $\forall i = 1, ..., n$.
- 2. negative definite, if $|A_1| < 0$, $|A_2| > 0$, $|A_3| < 0$, etc. (sign alternates with first sign negative).
- 3. positive semi-definite, if $|A_i| \ge 0 \quad \forall i = 1, \dots, n$.
- 4. negative semi-definite, if $|A_1| \le 0, |A_2| \ge 0, |A_3| \le 0, etc.$
- 5. indefinite, if none of the above holds.

Lemma 2 (using bordered Hessian) Assume an equality-constrained optimization problem with n choice variables and m constraints. Critical points of the Lagrangian can be classified by examining subdeterminants of the bordered Hessian.

A critical point is a strict local minimum if the signs of the n-m largest subdeterminants are all equal to the sign of $(-1)^m$. A critical point is a strict local maximum if the signs of n-m largest subdeterminants alternate and the sign of the largest subdeterminant is equal to the sign of $(-1)^n$.