

YLIOPISTOTENTTILOMAKEPOHJA / UNIVERSITY EXAM TEMPLATE

Koskee tiedekuntia LuTK, OyKKK, KaTK, TTK, TST ja BMTK (Linnanmaan tentit) / Concerns Faculties SCI, OBS, OMS, TECH, ITEE and BMM (Linnanmaa campus)

Tentin päivämäärä / Date of exam:	Tentin kesto tunteina / Exam in hours:		
7.12.2015	4		
Tiedekunta / Faculty: OBS / OyKKK			
Opintojakson koodi, nimi ja tentin numero / The code and the name of the course and number of the exam: 724208A Portfolio Theory (2nd exam)			
Tentaattori(t) / Examiner(s):		Sisäinen postios. / Internal address	
Andrew Conlin		6 ОУККК	
Sallitut apuvälineet / The devices allowed in the exam:			
☑ Nelilaskin /	Funktiolaskin	/	☑ Ohjelmoitava laskin /
Standard calculator Scie	entific calculat	tor	Programmable calculator
☐ Muu materiaali, tarkennettu alla / Other material, specified below:			
Tenttiin vastaaminen / Please answer the questions:			
☑ Suomeksi / in Finnish			
Kysymyspaperi on palautettava / Paper with exam questions must be returned:			
☐ Kyllä / Yes	Ei / No		
The exam consists of 10 quantitative questions (2 points each) and 5 short-answer essay questions (4 points each). You need 20 points to pass the exam. There is a formula sheet attached. You may answer in Facility.			

in English or Finnish. If you answer in Finnish, use yleiskieli. WRITE CLEARLY and SHOW **YOUR WORK** (no credit for answers if you do not show your work!)

Answer this first!! (write your response on the answer sheet!) I wish to use my midterm bonus points for this exam: YES NO

Part 1 Quantitative questions

Questions 1 and 2 are related.

- 1. You just bought 1000 shares of Kone on margin. You paid 38€ per share. The initial margin is 50%. The maintenance margin is 30%. How low can the price go before you get a margin call?
- 2. The interest rate on the loan form your broker is 3%. Assume you sell the shares 1 year from now at a price of 45€. The company does not pay a dividend. What is the return on your investment?

- 3. The current price of AMZN stock is \$500. The stock price goes down by 50% in the first year, then moves up 25% the second year, and moves up again 25% in the third year. What is the price of the stock after the third year?
- 4. Assume one risky asset and one risk-free asset. The risky asset has $E(r_p)=12\%$ and $\sigma_p=0.25$. The risk-free rate is 3%. Your risk aversion is 2.5. What is the expected return on your optimal complete portfolio?

Questions 5 and 6 use the following information:

Your portfolio has two stocks in it, A and B, and also US T-bills. The weights are $w_A = 65\%$ and $w_B = 25\%$ and $w_{tbill} = 10\%$. The expected returns are $E(r_A) = 15\%$, $E(r_B) = 8\%$, and $r_{tbill} = 1.5\%$. You also know $\sigma_A = 0.32$ and $\sigma_B = 0.19$ and $E(r_A) = 0.02736$.

- 5. What is the expected return on your portfolio?
- 6. What is the standard deviation of your portfolio?
- 7. Assume the CAPM model. The risk-free rate is 3%. Stock Y has E(r) = 16.5% and $\beta_Y = 1.5$. If Stock Z has E(r) = 25.5%, what is β_Z ?

Questions 8-10 are use the following information:

Stock A has $E(r_A) = 19\%$ and $\sigma_A = 0.35$. Stock B has $E(r_B) = 7\%$ and $\sigma_B = 0.13$. The covariance between A and B is $Cov(r_A, r_B) = 0.011375$ The risk free rate is 3%. Your level of risk aversion is 3.5.

- 8. What are the weights of A and B in the minimum variance portfolio?
- 9. What are the weights in the optimal risky portfolio?
- 10. What are the weights of A, B, and the risk-free rate in the optimal complete portfolio?

<u>Part 2</u> Write maximum 2 paragraphs (tekstikappale) per question. Write complete ideas; do NOT just list vocabulary words.

- 1. Explain why everyone holds the same risky portfolio in the CAPM model.
- 2. True/False and Explain: Because the market is nearly efficient, ALL investors should just invest passively.
- 3. What do we mean by "limits to arbitrage" and why is this idea so important for Behavioral Finance?
- 4. Define the efficient frontier and explain its role in optimal portfolio construction.
- 5. Can mutual fund managers beat the market? Discuss the views both for and against.

Formula Sheet - Kaavakokoelma

$$(1+R) = (1+r)(1+i)$$

$$APR = \frac{\left(1 + EAR\right)^T - 1}{T}$$

$$\sigma^2 = \sum_{s} p(s)[r(s) - E(r)]^2, \quad \sigma = \sqrt{\sigma^2}$$

$$Cov(r_i, r_j) = \sum_{s} p(s) [r_i(s) - E(r_i)] [r_j(s) - E(r_j)]$$

$$S = \frac{E(r_p) - r_f}{\sigma_p}$$

$$y^* = \frac{E(r_P) - r_f}{A\sigma_P^2}$$

$$E(r_p) = \sum_{i=1}^n w_i E(r_i)$$

$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j Cov(r_i, r_j)$$

$$Cov(r_i, r_i) = \rho_{ii}\sigma_i\sigma_i$$

$$W_{A_{Min}} = \frac{\sigma_B^2 - Cov(r_A, r_B)}{\sigma_A^2 + \sigma_B^2 - 2Cov(r_A, r_B)}; W_{B_{Min}} = 1 - W_{A_{Min}}$$

$$w_{A} = \frac{[E(r_{A}) - r_{f}]\sigma_{B}^{2} - [E(r_{B}) - r_{f}]Cov(r_{A}, r_{B})}{[E(r_{A}) - r_{f}]\sigma_{B}^{2} + [E(r_{B}) - r_{f}]\sigma_{A}^{2} - [E(r_{A}) - r_{f} + E(r_{B}) - r_{f}]Cov(r_{A}, r_{B})}; w_{B} = 1 - w_{A}$$

$$E(R_i) = \alpha_i + \beta_i E(R_M)$$

$$\sigma_{i_{or}P}^2 = \beta_{i_{or}P}^2 \sigma_M^2 + \sigma^2(e_{i_{or}P})$$

$$Cov(r_i, r_j) = \beta_i \beta_j \sigma_M^2$$

$$\alpha_P = \sum_{i=1}^n w_i \alpha_i; \quad \beta_P = \sum_{i=1}^n w_i \beta_i; \quad \sigma^2(e_P) = \sum_i w_i^2 \sigma^2(e_i)$$

$$w_i^0 = \frac{\alpha_i}{\sigma^2(e_i)} \quad \Rightarrow \quad w_i = \frac{w_i^0}{\sum_{i=1}^n w_i^0}$$

$$w_A^0 = \frac{\alpha_A}{\sigma^2(e_A)} \longrightarrow w_A^* = \frac{w_A^0}{1 + (1 - \beta_A)w_A^0}$$

$$S_P^2 = S_M^2 + \left[\frac{\alpha_A}{\sigma(e_A)}\right]^2$$

$$E(r_i) = r_f + \beta_i \left[E(r_M) - r_f \right]$$

$$\beta_i = \frac{Cov(r_i, r_M)}{\sigma_M^2}$$

$$E(r_P) = r_f + \beta_{P1} [E(r_1) - r_f] + \beta_{P2} [E(r_2) - r_f] + \dots$$

